您的位置:首页 » 医疗资讯 » 科研新知 » 正文

警惕臭虫!异地搬迁 卷土重来

发布时间: 2021-08-06 03:56:26      来源:http://来源:科技日报

用手机扫描二维码在手机上继续观看

什么是自体免疫性肝炎
手机查看

■将新闻进行到底臭虫曾经一度被控制,现在却卷土重来,科学家开始尝试新的方法来对付它们。近期的研究已提出了一些新颖的办法,能在这些吸血昆虫成长起来之前,检测到它们的存在,而且这些研究也揭示了臭虫的某些生

    ■将新闻进行到底

    臭虫曾经一度被控制,现在却卷土重来,科学家开始尝试新的方法来对付它们。近期的研究已提出了一些新颖的办法,能在这些吸血昆虫成长起来之前,检测到它们的存在,而且这些研究也揭示了臭虫的某些生物学特点,可作为防治臭虫的突破口。

    ——— 臭虫之害 ——— 

    不仅能传播病菌,还能让你失眠、情绪低落

    一位中年男性独自住在美国辛辛那提附近的低收入社区,但他并不孤独。天黑后,臭虫会从他的躺椅和破旧的弹簧床垫中爬出,吸食他的血液。我在他的房间里发现了多达数千只臭虫,可以判断,他的这种生活状态已经持续很长时间了。受制于贫穷和疾病,这个男人只能无奈地忍受这些虫子的日夜叮咬,看着它们的数量日渐膨胀。

    由于DDT和其他广谱杀虫剂的出现,在过去近50年里,臭虫中的温带臭虫几近消失。但如今,它们卷土重来,并且不止是出现在拥挤的城市地区。这种害虫可能在旅馆、大学宿舍、零售商店、办公楼、剧院、医院以及居民住宅中滋长。即便如此,在大部分地区,臭虫只是被当作一种烦人的东西而被无视,但实际上,臭虫除了叮咬,令人发痒之外,还能导致更多问题:2010年的一项调查显示,在一个臭虫大量滋生的社区,400多名居民中有31%的人出现其他症状,比如失眠、情绪低落等,这些症状都“归功于”臭虫。2011年的一项研究发现,臭虫携带的耐甲氧西林金黄色葡萄球菌(MRSA)可能导致严重皮肤损伤,尽管还需要更多的研究才能确定,臭虫是否会促进MRSA的传播。臭虫还可能造成不小的经济损失,例如旅馆可能不得不关闭一些房间,以阻止它们滋生繁衍。

    不进食存活6个月,一生可产500个卵

    要理解臭虫如何烦扰人类,需要对臭虫的生物学特征有一个基本认识。臭虫会受到热源和二氧化碳(也可能是体味)的吸引,而所有人都能产生并释放这些东西。臭虫会成群附着在床上和床的周围,白天隐藏于阴暗处及缝隙内,夜里则外出活动,以吸食宿主血液为生。在有正常的食物供应时,一只成年雌性臭虫每天大概能产两个卵,整个生命周期中平均可产下150—500个卵。在理想条件下,臭虫不进食也能存活6个月甚至更久。臭虫很容易扩散开来,它们可在邻近的居室间自由移动,或附着在人们的衣服、鞋及其他私人物品上进行迁移。

    为击败这些讨厌的害虫,科学家正在研究,臭虫之害为何能死灰复燃。肯塔基大学的迈克尔·波特认为,臭虫群体数量的恢复,可能受益于一次“完美风暴”——它们进化出了能抵抗杀虫剂的基因、人们把控制重点转向其他城市害虫、国际旅行和迁移模式的改变等众多利好因素,促进了臭虫的滋生。

    ——— 人虫大战 ———

     火药、有害化学物质曾是人们对抗臭虫的“武器”

    人类与臭虫的斗争历史悠久。考古学家已发掘出3500年前,古埃及法老王时期的臭虫残骸。事实上,这种斗争关系的出现时间久远得多。一些专家推测,臭虫的祖先是蝙蝠身上的寄生虫,后来转移到人类身上,而这个过程可能发生于人类的穴居时代。当人类祖先从游牧生活方式向永久定居方式转变时,臭虫与人类的寄生关系就固定了下来。在气候温和的纬度地区,冬季的来临会抑制害虫的生长。由于对冷敏感,臭虫的种群数量会在温暖月份内增加,在寒冷月份减少。

    在杀虫剂发明之前,我们的先辈使用了他们能想到的所有方法来控制臭虫数量,有时甚至会尝试现代社会不允许的危险做法。例如,1777年的一本“害虫控制指南”建议,在床铺周围的裂缝中点燃火药以驱赶臭虫(我不知道当时的人使用这种方法只是为了“报仇”,还是说具有实用价值)。据说,把某些植物,比如苦艾及藜芦,放在“适量尿液”中煮沸,也可以起到类似的效果。砒霜、氰化物及其他有害化学物质也曾是人们对抗臭虫的“武器”,但收效甚微。更常见的做法是,人们会对屋子做一次“大扫除”——把沸水和煤油泼在床架的死角,扔掉草垫、褥子等。这种做法能暂时缓解虫害。

    DDT曾对臭虫具有良好的杀灭作用

    20世纪初,欧洲及北美地区的建筑物普遍开始使用中央供暖系统,臭虫迎来了“美好年代”,它们的生长不受季节的限制了。直到20世纪40年代, DDT问世之后,人类才真正从臭虫的烦扰中解脱出来。不幸的是,人们发现DDT及类似化学物质可能导致某些严重的环境问题,比如这种物质可能与其他环境因素一起,使某些肉食性鸟类濒临灭绝。因而在1972年,美国禁止使用和销售DDT。

    不过,即便DDT被禁止使用,臭虫也到2000年左右才卷土重来。学者们为臭虫的这次回归提出了多种解释。部分人认为,虽然在时间上,臭虫大军的重新崛起并未与任何人群的大规模迁徙吻合,但由于在某些地区,臭虫一直没得到控制,而随着这些地区与其他地区间的交流增多,臭虫就可能转移,出现在臭虫一度被消灭的地区,并在那里“生根发芽”。而另一个影响力更大的因素是,东西方国家间的交流也在增多,而各国内部的人口迁移同样日趋频繁。

    DDT之类的广谱杀虫剂被针对性更强、效果更好的诱饵和喷雾剂取代,这也在一定程度上帮助臭虫逃过灭顶之灾,因为这些诱饵和喷雾剂主要用于杀灭蟑螂、蚂蚁及其他城市害虫。耐药性也是臭虫死灰复燃的一个原因,再加上人们不好意思承认自家有臭虫,阻碍了虫害的有效控制,从而导致臭虫的大范围流行。

    ——— 搜捕臭虫 ——— 

    干扰臭虫的信息素,使其种群数量降低

    在数千年前就有文字记录的臭虫从是令人生畏的“敌人”。不过,研究者们正试图改变这种局面。他们的首要任务是找到更好的方法,及早发现臭虫的藏匿地点。目前,寻找一个小而分散的臭虫种群,最好的方法是让一只受过良好训练的狗来执行这一任务。虽然还不清楚狗是通过什么机制来寻找臭虫,不过可能还是与某些化学信号有关。

    当然,检测臭虫仅仅是第一步,将其根除的难度要大得多。仔细检查之后,检查者通常直接将藏在褥垫或弹簧床垫中的臭虫就地杀灭。紧接着,他们会采用真空喷雾、蒸发、冷冻或喷洒某种快速起效的杀虫剂,将能看见的臭虫迅速杀死。他们还可能向墙壁缝隙喷撒杀虫剂或干燥剂,以杀灭爬经此处的臭虫,这种方法的效果可以持续数天、数周或数月。显然,我们发现臭虫后,需要新的清除方法。

    为达到此目的,世界各地的科学家已在研究臭虫不同寻常的交配方式,以寻找可能的途径。瑞典阿尔纳普农业大学的理查德·伊格纳尔及其同事,以及瑞典兰德大学的卡米拉·瑞恩分别在2010年和2011年发表的研究结果显示,臭虫对创伤性交配还有一种很有趣的适应性改变,而这种改变,很可能成为消灭臭虫的突破口。雄性臭虫在初次交配时,往往不能正确找到性对象,可能扑向其他成熟雄性、未成熟的雄性和雌性臭虫。对于后面3种臭虫,这样的性接触可能造成足以威胁生命的表皮损伤,因为它们没有成熟雌性所具有的适应破损的能力。研究者还发现,为了避免上述危险的求爱行为,未成熟的雌性及成熟雄性臭虫会释放出某种信息素,以告知突袭者,它们的行为是在浪费时间和精子。不难想象,如果我们能干扰臭虫的信息素,将取得怎样的效果。理论上,在臭虫藏匿点喷洒合成信息素,可抑制它们的交配行为,即使它们习惯了这种气味,也能使臭虫错误交配,使种群数量降低。

    破坏臭虫体内的含菌体,最终消灭臭虫

    臭虫繁殖的另一特点也值得一提。臭虫有一个含有共生细菌的器官,称为含菌体。日本国家先进工业科学技术研究院的深津武马与合作者试图查明,使用抗生素,清除共生细菌,会对臭虫的生育能力产生何种影响。他们发现,无菌群体中的雌性臭虫生育率较低,而给雌性臭虫吸食的血液中加入维生素B,可恢复它们的生育能力。这表明,含菌体中的细菌能为臭虫提供相应的营养成分。

    根据上述发现不难推测,给臭虫宿主使用抗生素,可以间接作用于臭虫的共生细菌,最终杀灭臭虫。不过,我们还需要一个针对性更强的实施方案。健康人使用广谱抗生素会产生很多问题。首先,肠道有益菌可能会被抑制,耐药菌就会在肠道内占据优势地位,而这些细菌中,有些可能是病原体,有些可能导致维生素缺乏症。臭虫含菌体中的细菌是我们的真正目标,因而我们需要设计出针对性极强、只作用于这些细菌的抗生素。

    如今,臭虫已不大可能像过去一样,迅速被控制下来,但通过对公众进行宣传教育,研究这些虫子独有的生理漏洞,科学家还是可以找到击败它们的方法。将臭虫视为一个公共卫生问题,而不是难以启齿的“家丑”,这是今天就应该采取的措施。

    ■编后

    臭虫确实是个噩梦,尤其对于那些相对贫穷,承担不起杀虫费用的人来说更是如此。受过良好训练的灭虫人员可以通过彻底检查,合理使用现有杀虫剂,并综合其他灭虫策略来控制臭虫肆虐,但他们的工作要耗费大量人力物力,成本高昂。对于普通人来说,最好的防虫方法就采用一些常规措施,避免将臭虫带入家中。比如我从臭虫成灾的公寓里回到家中时,首先会将随身衣服放进干洗机,将强度开到最大,把衣服清洗干净。同样地,当我旅行归来后,为了避免把臭虫带进家里,我会将行李箱放在汽车内,让它度过一个炎热的夏季周末,而不是直接将其带进家中,因为持续暴露于45℃的高温,能将手提箱内每一个角落的臭虫都杀死。

 
(文/小编)
分享到:

润宝医疗网 Copyright © 2006-2020 AiBaoYL.Com All Rights Reserved

Processed in 0.231 second(s), 66 queries, Memory 1.36 M